Kafe-sviaz.ru

Финансовый журнал
7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Корреляционный анализ используется для

Корреляционный анализ

экономические науки

  • Дашкина Дарья Владимировна , бакалавр, студент
  • Башкирский государственный аграрный университет
  • КОРРЕЛЯЦИОННЫЕ ПОЛЯ
  • КОРРЕЛЯЦИЯ
  • КОРРЕЛЯЦИОННЫЙ АНАЛИЗ
  • КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ

Похожие материалы

Исследователей нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, такая связь может наблюдаться между погрешностью аппаратной обработки экспериментальных данных и величиной скачков сетевого напряжения. Другим примером может служить связь между пропускной способностью канала передачи данных и соотношением сигнал/шум.

В 1886 году английский естествоиспытатель Френсис Гальтон для обозначения характера подобного рода взаимодействий ввёл термин «корреляция». Позже его ученик Карл Пирсон разработал математическую формулу, позволяющую дать количественную оценку корреляционным связям признаков.

Зависимости между величинами (факторами, признаками) разделяют на два вида: функциональную и статистическую.

При функциональных зависимостях каждому значению одной переменной величины соответствует определенное значение другой переменной. Кроме того, функциональная связь двух факторов возможна только при условии, что вторая величина зависит только от первой и не зависит ни от каких других величин. В случае зависимости величины от множества факторов, функциональная связь возможна, если первая величина не зависит ни от каких других факторов, кроме входящих в указанное множество.

При статистической зависимости изменение одной из величин влечёт изменение распределения других величин, которые с определенными вероятностями принимают некоторые значения.

Значительно больший интерес представляет другой частный случай статистической зависимости, когда существует взаимосвязь значений одних случайных величин со средним значением других, при той особенности, что в каждом отдельном случае любая из взаимосвязанных величин может принимать различные значения.

Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией.

Корреляционный анализ — метод, позволяющий обнаружить зависимость между несколькими случайными величинами.

Корреляционный анализ решает две основные задачи:

  • Первая задача заключается в определении формы связи, т.е. в установлении математической формы, в которой выражается данная связь. Это очень важно, так как от правильного выбора формы связи зависит конечный результат изучения взаимосвязи между признаками.
  • Вторая задача состоит в измерении тесноты, т.е. меры связи между признаками с целью установить степень влияния данного фактора на результат. Она решается математически путем определения параметров корреляционного уравнения.

Затем проводятся оценка и анализ полученных результатов при помощи специальных показателей корреляционного метода (коэффициентов детерминации, линейной и множественной корреляции и т.д.), а также проверка существенности связи между изучаемыми признаками.

Методами корреляционного анализа решаются следующие задачи:

  1. Взаимосвязь. Есть ли взаимосвязь между параметрами?
  2. Прогнозирование. Если известно поведение одного параметра, то можно предсказать поведение другого параметра, коррелирующего с первым.
  3. Классификация и идентификация объектов. Корреляционный анализ помогает подобрать набор независимых признаков для классификации.

Корреляция — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). Суть ее заключается в том, что при изменении значения одной переменной происходит закономерное изменение (уменьшению или увеличению) другой переменной.

Для определения наличия взаимосвязи между двумя свойствами используется коэффициент корреляции.

Коэффициент корреляции р для генеральной совокупности, как правило, неизвестен, поэтому он оценивается по экспериментальным данным, представляющим собой выборку объема n пар значений (xi, yi), полученную при совместном измерении двух признаков Х и Y. Коэффициент корреляции, определяемый по выборочным данным, называется выборочным коэффициентом корреляции (или просто коэффициентом корреляции). Его принято обозначать символом r.

К основным свойствам коэффициента корреляции относятся:

  1. Коэффициенты корреляции способны характеризовать только линейные связи, т.е. такие, которые выражаются уравнением линейной функции. При наличии нелинейной зависимости между варьирующими признаками следует использовать другие показатели связи.
  2. Значения коэффициентов корреляции – это отвлеченные числа, лежащее в пределах от -1 до +1, т.е. -1 0 имеет место положительная корреляция (с увеличением x значения y в целом имеют тенденцию к возрастанию), при p 0,70);
  3. средняя (при 0,50

Список литературы

  1. Аблеева, А. М. Формирование фонда оценочных средств в условиях ФГОС [Текст] / А. М. Аблеева, Г. А. Салимова // Актуальные проблемы преподавания социально-гуманитарных, естественно — научных и технических дисциплин в условиях модернизации высшей школы : материалы международной научно-методической конференции, 4-5 апреля 2014 г. / Башкирский ГАУ, Факультет информационных технологий и управления. — Уфа, 2014. — С. 11-14.
  2. Ганиева, А.М. Статистический анализ занятости и безработицы [Текст] / А.М. Ганиева, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры «Статистики и информационных систем в экономике» / Башкирский ГАУ. — Уфа, 2011. — С. 315-316.
  3. Исмагилов, Р. Р. Творческая группа — эффективная форма организации научных исследований в высшей школе [Текст] / Р. Р. Исмагилов, М. Х. Уразлин, Д. Р. Исламгулов // Научно-технический и научно-образовательный комплексы региона : проблемы и перспективы развития : материалы научно-практической конференции / Академия наук РБ, УГАТУ. — Уфа, 1999. — С. 105-106.
  4. Исламгулов, Д.Р. Компетентностный подход в обучении: оценка качества образования [Текст] / Д.Р. Исламгулов, Т.Н. Лубова, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. — № 1. – С. 62-69.
  5. Исламгулов, Д. Р. Научно-исследовательская работа студентов — важнейший элемент подготовки специалистов в аграрном вузе [Текст] / Д. Р. Исламгулов // Проблемы практической подготовки студентов в вузе на современном этапе и пути их решения : сб. материалов науч.-метод. конф., 24 апреля 2007 года / Башкирский ГАУ. — Уфа, 2007. — С. 20-22.
  6. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта – компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова// БЪДЕЩИТЕ ИЗСЛЕДОВАНИЯ – 2016: Материали за XII Международна научна практична конференция, 15-22 февруари 2016. – София: Бял ГРАД-БГ ООД, 2016. – Том 4 Педагогически науки. – C. 80-85.
  7. Лубова, Т.Н. Новые образовательные стандарты: особенности реализации [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Современный научный вестник. – 2015. – Т. 7. — № 1. – С. 79-84.
  8. Лубова, Т.Н. Организация самостоятельной работы обучающихся [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Реализация образовательных программ высшего образования в рамках ФГОС ВО: материалы Всероссийской научно-методической конференции в рамках выездного совещания НМС по природообустройству и водопользованию Федерального УМО в системе ВО. / Башкирский ГАУ. — Уфа, 2016. — С. 214-219.
  9. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта – компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. — № 1. – С. 85-93.
  10. Саубанова, Л.М. Уровень демографической нагрузки [Текст] / Л.М. Саубанова, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры «Статистики и информационных систем в экономике» / Башкирский ГАУ. — Уфа, 2011. — С. 321-322.
  11. Фахруллина, А.Р. Статистический анализ инфляции в России [Текст] / А.Р. Фахруллина, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры «Статистики и информационных систем в экономике» / Башкирский ГАУ. — Уфа, 2011. — С. 323-324.
  12. Фархутдинова, А.Т. Рынок труда в Республике Башкортостан в 2012 году [Электронный ресурс] / А.Т. Фархутдинова, Т.Н. Лубова // Студенческий научный форум. Материалы V Международной студенческой электронной научной конференции: электронная научная конференция (электронный сборник). Российская академия естествознания. 2013.

Электронное периодическое издание зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), свидетельство о регистрации СМИ — ЭЛ № ФС77-41429 от 23.07.2010 г.

Соучредители СМИ: Долганов А.А., Майоров Е.В.

Корреляционный анализ

Корреля́ция — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом, изменения одной или нескольких из этих величин приводят к систематическому изменению другой или других величин. Математической мерой корреляции двух случайных величин служит коэффициент корреляции.

Корреляция может быть положительной и отрицательной (возможна также ситуация отсутствия статистической взаимосвязи — например, для независимых случайных величин). Отрицательная корреляция — корреляция, при которой увеличение одной переменной связано с уменьшением другой переменной, при этом коэффициент корреляции отрицателен. Положительная корреляция — корреляция, при которой увеличение одной переменной связано с увеличением другой переменной, при этом коэффициент корреляции положителен.

Автокорреляция — статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса — со сдвигом по времени.

Метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными, называется корреляционным анализом.

Содержание

Коэффициент корреляции

Коэффицие́нт корреля́ции или парный коэффицие́нт корреля́ции в теории вероятностей и статистике — это показатель характера изменения двух случайных величин. Коэффициент корреляции обозначается латинской буквой R и может принимать значения между -1 и +1. Если значение по модулю находится ближе к 1, то это означает наличие сильной связи (при коэффициенте корреляции равном единице говорят о функциональной связи), а если ближе к 0, то слабой.

Коэффициент корреляции Пирсона

Для метрических величин применяется коэффициент корреляции Пирсона, точная формула которого была введена Фрэнсисом Гальтоном:

Пусть X,Y — две случайные величины, определённые на одном вероятностном пространстве. Тогда их коэффициент корреляции задаётся формулой:

,

где cov обозначает ковариацию, а D — дисперсию, или, что то же самое,

,

где символ обозначает математическое ожидание.

Для графического представления подобной связи можно использовать прямоугольную систему координат с осями, которые соответствуют обеим переменным. Каждая пара значений маркируется при помощи определенного символа. Такой график называется «диаграммой рассеяния».

Метод вычисления коэффициента корреляции зависит от вида шкалы, к которой относятся переменные. Так, для измерения переменных с интервальной и количественной шкалами необходимо использовать коэффициент корреляции Пирсона (корреляция моментов произведений). Если по меньшей мере одна из двух переменных имеет порядковую шкалу, либо не является нормально распределённой, необходимо использовать ранговую корреляцию Спирмена или τ (тау) Кендала. В случае, когда одна из двух переменных является дихотомической, используется точечная двухрядная корреляция, а если обе переменные являются дихотомическими: четырёхполевая корреляция. Расчёт коэффициента корреляции между двумя недихотомическими переменными не лишён смысла только тогда, кода связь между ними линейна (однонаправлена).

Коэффициент корреляции Кенделла

Используется для измерения взаимной неупорядоченности.

Коэффициент корреляции Спирмена

Свойства коэффициента корреляции

  • Неравенство Коши — Буняковского:

если принять в качестве скалярного произведения двух случайных величин ковариацию , то норма случайной величины будет равна , и следствием неравенства Коши — Буняковского будет: .

  • Коэффициент корреляции равен тогда и только тогда, когда X и Y линейно зависимы:

, где . Более того в этом случае знаки и k совпадают: .

  • Если X,Yнезависимые случайные величины, то . Обратное в общем случае неверно.

Корреляционный анализ

Корреляционный анализ — метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков для установления между ними статистических взаимосвязей.

Цель корреляционного анализа — обеспечить получение некоторой информации об одной переменной с помощью другой переменной. В случаях, когда возможно достижение цели, говорят, что переменные коррелируют. В самом общем виде принятие гипотезы о наличии корреляции означает что изменение значения переменной А, произойдет одновременно с пропорциональным изменением значения Б: если обе переменные растут то корреляция положительная, если одна переменная растёт, а вторая уменьшается, корреляция отрицательная.

Корреляция отражает лишь линейную зависимость величин, но не отражает их функциональной связности. Например, если вычислить коэффициент корреляции между величинами A = sin(x) и B = cos(x) , то он будет близок к нулю, т. е. зависимость между величинами отсутствует. Между тем, величины A и B очевидно связаны функционально по закону sin 2 (x) + cos 2 (x) = 1 .

Ограничения корреляционного анализа

  1. Применение возможно в случае наличия достаточного количества случаев для изучения: для конкретного вида коэффициента корреляции составляет от 25 до 100 пар наблюдений.
  2. Второе ограничение вытекает из гипотезы корреляционного анализа, в которую заложена линейная зависимость переменных. Во многих случаях, когда достоверно известно, что зависимость существует, корреляционный анализ может не дать результатов просто ввиду того, что зависимость нелинейна (выражена, например, в виде параболы).
  3. Сам по себе факт корреляционной зависимости не даёт основания утверждать, какая из переменных предшествует или является причиной изменений, или что переменные вообще причинно связаны между собой, например, ввиду действия третьего фактора.

Область применения

Данный метод обработки статистических данных весьма популярен в экономике и социальных науках (в частности в психологии и социологии), хотя сфера применения коэффициентов корреляции обширна: контроль качества промышленной продукции, металловедение, агрохимия, гидробиология, биометрия и прочие.

Популярность метода обусловлена двумя моментами: коэффициенты корреляции относительно просты в подсчете, их применение не требует специальной математической подготовки. В сочетании с простотой интерпретации, простота применения коэффициента привела к его широкому распространению в сфере анализа статистических данных.

Ложная корреляция

Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи.

В современной количественной методологии социальных наук, фактически, произошел отказ от попыток установить причинно-следственные связи между наблюдаемыми переменными эмпирическими методами. Поэтому, когда исследователи в социальных науках говорят об установлении взаимосвязей между изучаемыми переменными, подразумевается либо общетеоретическое допущение, либо статистическая зависимость.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое «Корреляционный анализ» в других словарях:

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — см. АНАЛИЗ КОРРЕЛЯЦИОННЫЙ. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — раздел математической статистики, объединяющий практические методы исследования корреляционной зависимости между двумя (или большим числом) случайными признаками или факторами. См. Корреляция (в математической статистике) … Большой Энциклопедический словарь

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — КОРРЕЛЯЦИОННЫЙ АНАЛИЗ, раздел математической статистики, объединяющий практические методы исследования корреляционной зависимости между двумя (или большим числом) случайными признаками или факторами. См. Корреляция (см. КОРРЕЛЯЦИЯ (взаимная связь … Энциклопедический словарь

Корреляционный анализ — (в экономике) [correlation analysis] ветвь математической статистики, изучающая взаимосвязи между изменяющимися величинами (корреляция соотношение, от латинского слова correlatio). Взаимосвязь может быть полная (т.е. функциональная) и неполная,… … Экономико-математический словарь

корреляционный анализ — (в психологии) (от лат. correlatio соотношение) статистический метод оценки формы, знака и тесноты связи исследуемых признаков или факторов. При определении формы связи рассматривается ее линейность или нелинейность (т. е. как в среднем… … Большая психологическая энциклопедия

корреляционный анализ — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN correlation analysis … Справочник технического переводчика

корреляционный анализ — koreliacinė analizė statusas T sritis Kūno kultūra ir sportas apibrėžtis Statistikos metodas, kuriuo įvertinami tiriamųjų asmenų, reiškinių požymiai arba veiksnių santykiai. atitikmenys: angl. correlation studies vok. Analyse der Korrelation, f;… … Sporto terminų žodynas

Корреляционный анализ — совокупность основанных на математической теории корреляции (См. Корреляция) методов обнаружения корреляционной зависимости между двумя случайными признаками или факторами. К. а. экспериментальных данных заключает в себе следующие… … Большая советская энциклопедия

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — раздел матем. статистики, объединяющий практич. методы исследования корреляц. зависимости между двумя (или большим числом) случайными признаками или факторами. См. Корреляция … Большой энциклопедический политехнический словарь

Корреляционный анализ — Один из основных методов социолингвистики, целью которого является установление соотношений между языковыми явлениями и социальными параметрами. См. также: Социолингвистическая корреляция, Социолингвистическая переменная … Словарь социолингвистических терминов

Корреляционный анализ

Корреляционный анализ

Корреляционный анализ – раздел математической статистики, исследующий зависимости между двумя или более случайными величинами. Термин «Correlation» означает взаимосвязь, взаимоотношение.

Функциональная зависимость и корреляция

Еще Гиппократ обратил внимание на то, что между телосложением и темпераментом людей, между строением их тела и предрасположенностью к заболеваниям существует определенная взаимосвязь.

В области физической культуры и спорта можно привести много примеров такой взаимосвязи. Например, от уровня силы во многом зависит результат, показанный спортсменом в таких видах спорта, как тяжелая атлетика, пауэрлифтинг, гиревой спорт, метание диска и толкание ядра и т.д. Результат в беге на 100 м во многом зависит от процента содержания в мышцах спортсменов быстрых мышечных волокон (II типа). Доказано, что у выдающихся спринтеров этот показатель превышает 80%. Чтобы определить, насколько сильна взаимосвязь между переменными (признаками) используется корреляционный анализ.

Две случайные величины X и Y могут быть:

  • связаны функциональной зависимостью (жестко, как зависимость переменных в математическом анализе);
  • независимыми;
  • связаны стохастической (вероятностной зависимостью) при которой изменение одной величины влечет изменение распределения другой.

В качестве меры связи между случайными величинами используется коэффициент корреляции. Коэффициент корреляции для генеральной совокупности обозначается ρ. Однако, как правило, он неизвестен. Поэтому он оценивается по экспериментальным данным, представляющим выборку объема n, полученную при совместном измерении двух переменных (признаков) X и Y. Коэффициент корреляции, определяемый по выборочным данным называется выборочным коэффициентом корреляции (или просто коэффициентом корреляции). Его принято обозначать символом r. Наиболее часто в качестве оценок генерального коэффициента корреляции используется коэффициент корреляции Пирсона (r) и коэффициент корреляции Спирмена (rs).

Коэффициент корреляции Пирсона ( r )

Чтобы правильно применять корреляционный анализ в научных исследованиях, нужно учитывать условия применения этого метода.

Условия, при которых возможен расчет коэффициента корреляции Пирсона:

  1. Экспериментальные данные должны быть представлены в только в интервальной шкале или шкале отношений.
  2. Распределение экспериментальных данных подчиняется нормальному закону.
  3. Предполагается линейная зависимость между случайными величинами X и Y.

Коэффициент корреляции Спирмена ( r S)

При расчете коэффициента корреляции Спирмена требования к исходным данным менее строгие, а именно:

  1. Данные могут быть представлены в порядковой, интервальной шкале или шкале отношений.
  2. Допускается любой закон распределения случайных величин X и Y.
  3. Между случайными величинами X и Y должна существовать монотонно-возрастающая или монотонно-убывающая зависимость.

Свойства оценок коэффициентов корреляции

Рассчитанные коэффициенты корреляции могут принимать значения от -1 до +1.

  1. Если коэффициент корреляции равен: r =+1 и r = -1, это означает, что случайные величины X и Y связаны жесткой линейной зависимостью.
  2. Если r ≠ 0, то чем ближе |r| к единице, тем сильнее линейная зависимость случайных величин X и Y.
  3. Если коэффициент корреляции положительный (r > 0) – это означает, что между случайными величинами X и Y существует положительная корреляция (или другими словами положительная корреляционная зависимость). Примером положительной корреляционной зависимости является увеличение результата прыжка в длину с увеличением силы мышц ног (рис.1А).
  4. Eсли коэффициент корреляции отрицательный (r

Корреляционный анализ используется для

При изучении общественного здоровья и здравоохранения в научных и практических целях исследователю часто приходится проводить статистический анализ связей между факторными и результативными признаками статистический совокупности (причинно-следственная связь) или определение зависимости параллельных изменений нескольких признаков этой совокупности от какой либо третьей величины (от общей их причины). Необходимо уметь изучать особенности этой связи, определять ее размеры и направление, а также оценивать ее достоверность. Для этого используются методы корреляции.

  1. Виды проявления количественных связей между признаками
    • функциональная связь
    • корреляционная связь

Определения функциональной и корреляционной связи

Функциональная связь — такой вид соотношения между двумя признаками, когда каждому значению одного из них соответствует строго определенное значение другого (площадь круга зависит от радиуса круга и т.д.). Функциональная связь характерна для физико-математических процессов.

Корреляционная связь — такая связь, при которой каждому определенному значению одного признака соответствует несколько значений другого взаимосвязанного с ним признака (связь между ростом и массой тела человека; связь между температурой тела и частотой пульса и др.). Корреляционная связь характерна для медико-биологических процессов.

Практическое значение установления корреляционной связи. Выявление причинно-следственной между факторными и результативными признаками (при оценке физического развития, для определения связи между условиями труда, быта и состоянием здоровья, при определении зависимости частоты случаев болезни от возраста, стажа, наличия производственных вредностей и др.)

Зависимость параллельных изменений нескольких признаков от какой-то третьей величины. Например, под воздействием высокой температуры в цехе происходят изменения кровяного давления, вязкости крови, частоты пульса и др.

Величина, характеризующая направление и силу связи между признаками. Коэффициент корреляции, который одним числом дает представление о направлении и силе связи между признаками (явлениями), пределы его колебаний от 0 до ± 1

  • Способы представления корреляционной связи
    • график (диаграмма рассеяния)
    • коэффициент корреляции
  • Направление корреляционной связи
    • прямая
    • oбратная
  • Сила корреляционной связи
    • сильная: ±0,7 до ±1
    • средняя: ±0,3 до ±0,699
    • слабая: 0 до ±0,299
  • Методы определения коэффициента корреляции и формулы
    • метод квадратов (метод Пирсона)
    • ранговый метод (метод Спирмена)
  • Методические требования к использованию коэффициента корреляции
    • измерение связи возможно только в качественно однородных совокупностях (например, измерение связи между ростом и весом в совокупностях, однородных по полу и возрасту)
    • расчет может производиться с использованием абсолютных или производных величин
    • для вычисления коэффициента корреляции используются не сгруппированные вариационные ряды (это требование применяется только при вычислении коэффициента корреляции по методу квадратов)
    • число наблюдений не менее 30
  • Рекомендации по применению метода ранговой корреляции (метод Спирмена)
    • когда нет необходимости в точном установлении силы связи, а достаточно ориентировочных данных
    • когда признаки представлены не только количественными, но и атрибутивными значениями
    • когда ряды распределения признаков имеют открытые варианты (например, стаж работы до 1 года и др.)
  • Рекомендации к применению метода квадратов (метод Пирсона)
    • когда требуется точное установление силы связи между признаками
    • когда признаки имеют только количественное выражение

    Методика и порядок вычисления коэффициента корреляции

    1) Метод квадратов

    • построить вариационные ряды для каждого из сопоставляемых признаков, обозначив первый и второй ряд чисел соответственно х и у;
    • определить для каждого вариационного ряда средние значения (М1 и М2);
    • найти отклонения (dх и dy) каждого числового значения от среднего значения своего вариационного ряда;
    • полученные отклонения перемножить (dx X dy)
    • каждое отклонение возвести в квадрат и суммировать по каждому ряду (Σ dx 2 и dy 2 )
    • подставить полученные значения в формулу расчета коэффициента корреляции:

    при наличии вычислительной техники расчет производится по формуле:

    2) Ранговый метод

    • составить два ряда из парных сопоставляемых признаков, обозначив первый и второй ряд соответственно х и у. При этом представить первый ряд признака в убывающем или возрастающем порядке, а числовые значения второго ряда расположить напротив тех значений первого ряда, которым они соответствуют
    • величину признака в каждом из сравниваемых рядов заменить порядковым номером (рангом). Рангами, или номерами, обозначают места показателей (значения) первого и второго рядов. При этом числовым значениям второго признака ранги должны присваиваться в том же порядке, какой был принят при раздаче их величинам первого признака. При одинаковых величинах признака в ряду ранги следует определять как среднее число из суммы порядковых номеров этих величин
    • определить разность рангов между х и у (d): d = х — у
    • возвести полученную разность рангов в квадрат (d 2 )
    • получить сумму квадратов разности (Σ d 2 ) и подставить полученные значения в формулу:
  • Схема оценки корреляционной связи по коэффициенту корреляции

    Читать еще:  Анализ организационной структуры пример
    Ссылка на основную публикацию
    Adblock
    detector