Kafe-sviaz.ru

Финансовый журнал
8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Экономический анализ задачи линейного программирования

Линейное программирование в экономическом анализе

История появления линейного программирования

Основа выполнения любой задачи – это приятие кем-либо оптимального решения. Оптимальное решение позволяет достичь цель в заданных условиях с максимальным эффектом. Появление математических исследований конкретных проблем экономики приходится на конец 19-го- начало 20-го века.

К. Маркс описал в своей модели расширенного воспроизводства традиционное использование математических методов для формализованной характеристики. Данная модель стала первой макроэкономической моделью, которая позволяет открыть важные особенности производства.

Создатель математической школы Л. Вальрас в 1974 году разработал единую статистическую экономико-математическую модель народного хозяйства, которая стала называться системой общего равновесия экономики.

В модели Вальраса рациональными элементами являются постановка экстремальной задачи на экономики в целом и подход к стоимости как составляющей поиска общего оптимума.

В 1897 году известным буржуазным экономистом-математиком Парето на основе статистического материала была установлена закономерность распределения доходов в обществе в виде гиперболы – «кривая Парето».

Попробуй обратиться за помощью к преподавателям

В 1904 году русский экономист-математик В. К. Дмитриев создал уравнения связи расходов и выпуска продукции, использованные в дальнейшем американским экономистом В. Леонтьевым с целью построения баланса «затраты-выпуск».

Данные работы являются первыми попытками построить экономико-математическую модель. Их разработка разделила экономико-математический анализ статистических данных на два направления:

  1. Использование методов с целью характеристики экономических явлений;
  2. Для определения зависимости между ними.

В 1939 году ленинградским государственным университетом была выпущена книга Л.В. Канторовича «Математические методы организации и планирования производства». И лишь только через десять лет метод линейного программирования был переоткрыт в другой форме в США. Статьи по данной проблеме были опубликованы в 1949 году, в них Дж. Данциг излагал свой симплексный метод, который имеет много общих черт с методом последовательного преобразования плана, применявшимся Л. В. Канторовичем в решении практических задач.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Еще до Канторовича в России публиковались работы, содержавшие предпосылки к определению линейного программирования. Например, в 1930 году экономисты-транспортники, чтобы построить оптимальный план перевозок, разработали транспортную задачу в сетевом виде и решили ее без использования математического обоснования.

Работы по линейному программированию стали часто издаваться в 1950-х годах, когда велась детальная разработка основных методов решения, создавалось множество различных алгоритмов, применялись в практике новые методы, появлялась обширная литература.

Помимо методов решения задач линейного программирования, выпускались работы, содержащие методы динамического и нелинейного программирования.

Характеристика метода линейного программирования

Линейное программирование в экономическом анализе позволяет обосновать наиболее оптимальные экономические решения при жестких ограничениях, которые относятся к применяемым ресурсам в производстве (основные фонды, трудовые ресурсы, материалы и т.д.).

Применяя данный метод, можно решать задачи планирования деятельности предприятия. С его помощью можно определить оптимальную величину выпуска продукции, направления эффективного применения имеющихся производственных ресурсов.

Метод линейного программирования позволяет решать экстремальные задачи, когда определяются крайние значения, т.е. максимум и минимум функций переменных.

Линейное программирование применяется также при анализе переменных величин, когда имеют место определенные ограничивающие факторы.

Распространено решение транспортной задачи посредством линейного программирования. Сущность данной задачи состоит в минимизации затрат, которые возникают при эксплуатации транспортных средств в условиях ограничений относительно количества данных транспортных средств, продолжительности работы, грузоподъемности и т.д.

Помимо этого, линейное программирование позволяет решить задачу составления расписания. Необходимо распределить время функционирования персонала таким образом, чтобы оно было приемлемым для каждого сотрудника, а также для клиентов компании. Задача в данном случае состоит в максимизации количества клиентов при ограничениях количества персонала и рабочего времени.

Читать еще:  Метод компонентного анализа это

Из всего вышесказанного следует, что линейное программирование в экономическом анализе весьма распространено: оно применяется при анализе использования и размещения ресурсов, при планировании и прогнозировании деятельности компании.

Общая задача линейного программирования

Среди большого количества оптимизационных задач выделяются задачи линейного программирования, которые имеют специфические черты.

В каждой задаче элементы решения – это ряд неотрицательных переменных $x_1, x_2,…, x_n$. Следует так выбирать значения данных переменных, чтобы:

  • Действовали некоторые ограничения вида линейных неравенств или же неравенств в отношении переменных $x_1, x_2,…, x_n$.
  • Линейная функция $f$ переменных являлась максимумом (минимумом).

Общая задача линейного программирования – это задача, где оптимизируемая функция цели является линейной комбинацией известных коэффициентов $c_j$ и неизвестных переменных $x_j$ вида:

Рисунок 1. Функция. Автор24 — интернет-биржа студенческих работ

Функция $f$ также называется целевой функцией или же критерием эффективности.

Найти решение задачи линейного программирования означает отыскать значения переменных $x_j$, которые удовлетворяют ограничениям, а целевая функция при таких значениях принимает максимальное или минимальное значение.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Экономический анализ графического решения ЗЛП

Определить оптимальный план производства, если изделий, если , калькуляция, запасы ресурсов и прибыль от реализации изделий заданы таблицей: при условии, что изделий А нужно выпустить 5 штук. Решить задачу графически, провести экономический анализ и анализ решения на чувствительность.

Пусть выпускается штук изделий вида B и C соответственно. Тогда прибыль от продажи всех изделий , и

Ограничения по запасам ресурсов:

Построим область допустимых решений. Для этого построим каждую прямую и определим полуплоскости, заданные неравенствами.

Построим границы области:

или

Выбрав точку (0; 0), определим знак неравенства в полуплоскости: 1 • 0 + 1 • 0 ≤ 40 — верно, т.е. неравенство задает часть плоскости, расположенную ниже прямой .

(2) или

Выбрав точку (0; 0), определим знак неравенства в полуплоскости: 3 • 0 + 2 • 0 ≤ 60 — верно, т.е. неравенство задает часть плоскости, расположенную ниже прямой .

165 (3)

Эта прямая проходит через точку x2 = 165/5 = 33 параллельно оси OX. Определим полуплоскость, задаваемую неравенством. Выбрав точку (0; 0), определим знак неравенства в полуплоскости: 5 • 0 ≤ 165 — верно, т.е. неравенство 5x2 ≤ 165 задает часть плоскости, расположенную ниже прямой .

Итак, область допустимых решений имеет вид:

Вектор-градиент , составленный из коэффициентов целевой функции, указывает направление максимизации F(X). Прямая — начальный опорный план. Будем двигать эту прямую параллельно в направлении вектора . Поскольку нас интересует максимальное решение, то двигаем прямую до последнего касания области. На графике это точка .

Так как точка D получена в результате пересечения прямых (1) и (2), то ее координаты удовлетворяют уравнениям этих прямых:

Решив систему уравнений, получим: x1 = 10, x2 = 30. Найдем максимальное значение целевой функции:

.

Итак, максимальная прибыль 120 ден. ед. достигается при выпуске 10 изделий В 30 изделий С.

5.2 Экономический анализ результатов решения.

Подставив координаты оптимального решения в каждое неравенство системы ограничений

,

видим, что первое и второе неравенства обращаются в уравнения, а третье– в строгое неравенство

,

что означает, что время работы дубильного и раскройного участков используется полностью и является дефицитным ресурсом, а время работы завершающего участка присутствует в избытке, максимальное его потребление составляет 150 часов, излишек составляет

Читать еще:  Сравнительный анализ мотивов и стимулов

5.3 0

Анализ решения задачи на чувствительность.

Анализ решения задачи на чувствительность предполагает ответ на следующие вопросы:

· на сколько можно увеличить запасы дефицитных ресурсов;

· какова ценность дополнительной единицы каждого дефицитного ресурса;

· на сколько можно уменьшить запасы недефицитных ресурсов;

· В каких пределах могут колебаться коэффициенты целевой функции

VIII Международная студенческая научная конференция Студенческий научный форум — 2016

МЕТОДЫ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ ПРИ РЕШЕНИИ ЭКОНОМИЧЕСКИХ ЗАДАЧ

Метод линейного программирования дает возможность аргументировать наилучшее экономическое решение в обстоятельствах строгих ограничений, имеющих отношение к применяемым в изготовлении ресурсам (основные фонды, использованные материалы, рабочие средства). Использование данного метода в экономическом рассмотрении дает возможность регулировать проблемы, связанные главным образом с планированием работы компании. Этот метод может помочь установить подходящие величины выпуска продукта, а кроме того тенденции более результативного применения существующих в директиве компании производственных ресурсов.

Математическое программирование может использоваться и в отношении тех экономических явлений, взаимосвязь между которыми не считается линейной. Для данной цели могут быть применены методы нелинейного, динамического и выпуклого программирования.

Нелинейное программирование опирается на нелинейный характер целевой функции или ограничений, либо и того и другого. Формы целевой функции и неравенств ограничений в этих условиях могут быть различными.

Нелинейное программирование используется в экономическом анализе в частности, при установлении связи среди признаков, выражающих эффективность работы компании и размер данной работы, текстуру расходов в производстве, конъюнктуру торга и т.д.

Динамическое программирование основывается на концепции дерева заключений. Любой уровень данного дерева служит стадией для установления результатов прошлого постановления и для ликвидации неэффективных альтернатив данного постановления. Таким образом, динамическое программирование содержит многостадийный, многоэтапный вид. Данный тип программирования используется в экономическом анализе с целью отыскивания подходящих альтернатив формирования компании как в настоящее время, так и в будущем.

Выпуклое программирование предполагает собою разновидность нелинейного программирования. Данный тип программирования выражает нелинейный вид связи среди итогов работы компании и исполняемыми ею расходами. Выпуклое (по другому вогнутое) программирование исследует выпуклые целевые функции и выпуклые системы ограничений (точки допустимых значений). Выпуклое программирование используется в анализе хозяйственной деятельности с целью минимизации расходов, а вогнутое — с целью максимизации прибыли в обстоятельствах существующих ограничений воздействия условий, оказывающих большое влияние в рассматриваемых характеристиках противоположным образом. Следовательно, при анализируемых типах программирования выпуклые целевые функции минимизируются, а вогнутые-максимизируются.

Одним из основных методов линейного программирования является симплексный метод- это метод направленного перебора основных решений задачи. Он дает возможность за конечное число шагов расчета или отыскать наилучшее решение, или определить, то что рационального решения не существует.

Сущность метода: построение базисных решений, на которых монотонно убывает линейный функционал, до ситуации, когда выполняются необходимые условия локальной оптимальности.

Рассмотрим данный метод на примере решения следующей задачи.

Предприятие ООО «Пшеница» предполагает выпускать два вида продукции: печенье и пряники, для производства которых используется сырьё трех видов: мука, сахар, дрожжи. Производство обеспечено сырьем каждого вида в количествах: 750, 807, 840 кг. На изготовление печенья требуется затратить сырья каждого вида 5, 4, 1 кг, соответственно, а для пряников — 2, 5, 7 кг. Прибыль от реализации печенья составляет 30 ден. ед., для пряников — 49 ден. ед.

Читать еще:  Кластерный анализ евклидово расстояние

Занесём необходимые нам данные во вспомогательную таблицу:

Метод линейного программирования в экономическом анализе

Дата добавления: 2015-09-15 ; просмотров: 3245 ; Нарушение авторских прав

Метод линейного программирования дает возможность обосновать наиболее оптимальное экономическое решение в условиях жестких ограничений, относящихся к используемым в производстве ресурсам (основные фонды, материалы, трудовые ресурсы). Применение этого метода в экономическом анализе позволяет решать задачи, связанные главным образом с планированием деятельности организации. Данный метод помогает определить оптимальные величины выпуска продукции, а также направления наиболее эффективного использования имеющихся в распоряжении организации производственных ресурсов.

При помощи этого метода осуществляется решение так называемых экстремальных задач, которое заключается в нахождении крайних значений, то есть максимума и минимума функций переменных величин.

Этот период базируется на решении системы линейных уравнений в тех случаях, когда анализируемые экономические явления связаны линейной, строго функциональной зависимостью. Метод линейного программирования используется для анализа переменных величин при наличии определенных ограничивающих факторов.

Весьма распространено решение так называемой транспортной задачи с помощью метода линейного программирования. Содержание этой задачи заключается в минимизации затрат, осуществляемых в связи с эксплуатацией транспортных средств в условиях имеющихся ограничений в отношении количества транспортных средств, их грузоподъемности, продолжительности времени их работы, при наличии необходимости обслуживания максимального количества заказчиков.

Кроме этого, данный метод находит широкое применение при решении задачи составления расписания. Эта задача состоит в таком распределении времени функционирования персонала данной организации, которое являлось бы наиболее приемлемым как для членов этого персонала, так и для клиентов организации.

Данная задача заключается в максимизации количества обслуживаемых клиентов в условиях ограничений количества имеющихся членов персонала, а также фонда рабочего времени.

Таким образом, метод линейного программирования весьма распространен в анализе размещения и использования различных видов ресурсов, а также в процессе планирования и прогнозирования деятельности организаций.

Все же математическое программирование может применяться и в отношении тех экономических явлений, зависимость между которыми не является линейной. Для этой цели могут быть использованы методы нелинейного, динамического и выпуклого программирования.

Нелинейное программирование опирается на нелинейный характер целевой функции или ограничений, либо и того и другого. Формы целевой функции и неравенств ограничений в этих условиях могут быть различными.

Нелинейное программирование применяется в экономическом анализе в частности, при установлении взаимосвязи между показателями, выражающими эффективность деятельности организации и объемом этой деятельности, структурой затрат на производство, конъюнктурой рынка, и др.

Динамическое программирование базируется на построении дерева решений. Каждый ярус этого дерева служит стадией для определения последствий предыдущего решения и для устранения малоэффективных вариантов этого решения. Таким образом, динамическое программирование имеет многошаговый, многоэтапный характер. Этот вид программирования применяется в экономическом анализе с целью поиска оптимальных вариантов развития организации как в настоящее время, так и в будущем.

Выпуклое программирование представляет собой разновидность нелинейного программирования. Этот вид программирования выражает нелинейный характер зависимости между результатами деятельности организации и осуществляемыми ей затратами. Выпуклое (иначе вогнутое) программирование анализирует выпуклые целевые функции и выпуклые системы ограничений (точки допустимых значений). Выпуклое программирование применяется в анализе хозяйственной деятельности с целью минимизации затрат, а вогнутое — с целью максимизации доходов в условиях имеющихся ограничений действия факторов, влияющих на анализируемые показатели противоположным образом. Следовательно, при рассматриваемых видах программирования выпуклые целевые функции минимизируются, а вогнутые — максимизируются.

Ссылка на основную публикацию
Adblock
detector