Kafe-sviaz.ru

Финансовый журнал
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Анализ линейной регрессии

Linear regression

Generate predictions using an easily interpreted mathematical formula

What is linear regression?

Linear regression analysis is used to predict the value of a variable based on the value of another variable. The variable you want to predict is called the dependent variable. The variable you are using to predict the other variable’s value is called the independent variable.

This form of analysis estimates the coefficients of the linear equation, involving one or more independent variables that best predict the value of the dependent variable. Linear regression fits a straight line or surface that minimizes the discrepancies between predicted and actual output values. There are simple linear regression calculators that use a “least squares” method to discover the best-fit line for a set of paired data. You then estimate the value of X (dependent variable) from Y (independent variable).

Generate predictions more easily

You can perform linear regression in Microsoft Excel or use statistical software packages such as IBM SPSS® Statistics that greatly simplify the process of using linear-regression equations, linear-regression models and linear-regression formula. SPSS Statistics can be leveraged in techniques such as simple linear regression and multiple linear regression.

You can perform the linear regression method in a variety of programs and environments, including:

  • R linear regression
  • MATLAB linear regression
  • Sklearn linear regression
  • Linear regression Python
  • Excel linear regression

Why linear regression is important

Linear-regression models are relatively simple and provide an easy-to-interpret mathematical formula that can generate predictions. Linear regression can be applied to various areas in business and academic study.

You’ll find that linear regression is used in everything from biological, behavioral, environmental and social sciences to business. Linear-regression models have become a proven way to scientifically and reliably predict the future. Because linear regression is a long-established statistical procedure, the properties of linear-regression models are well understood and can be trained very quickly.

A proven way to scientifically and reliably predict the future

Business and organizational leaders can make better decisions by using linear regression techniques. Organizations collect masses of data, and linear regression helps them use that data to better manage reality — instead of relying on experience and intuition. You can take large amounts of raw data and transform it into actionable information.

You can also use linear regression to provide better insights by uncovering patterns and relationships that your business colleagues might have previously seen and thought they already understood. For example, performing an analysis of sales and purchase data can help you uncover specific purchasing patterns on particular days or at certain times. Insights gathered from regression analysis can help business leaders anticipate times when their company’s products will be in high demand.

Key assumptions of effective linear regression

Assumptions to be considered for success with linear-regression analysis:

  • For each variable: Consider the number of valid cases, mean and standard deviation.
  • For each model: Consider regression coefficients, correlation matrix, part and partial correlations, multiple R, R2, adjusted R2, change in R2, standard error of the estimate, analysis-of-variance table, predicted values and residuals. Also, consider 95-percent-confidence intervals for each regression coefficient, variance-covariance matrix, variance inflation factor, tolerance, Durbin-Watson test, distance measures (Mahalanobis, Cook and leverage values), DfBeta, DfFit, prediction intervals and case-wise diagnostic information.
  • Plots: Consider scatterplots, partial plots, histograms and normal probability plots.
  • Data: Dependent and independent variables should be quantitative. Categorical variables, such as religion, major field of study or region of residence, need to be recoded to binary (dummy) variables or other types of contrast variables.
  • Other assumptions: For each value of the independent variable, the distribution of the dependent variable must be normal. The variance of the distribution of the dependent variable should be constant for all values of the independent variable. The relationship between the dependent variable and each independent variable should be linear and all observations should be independent.

Регрессионный анализ связи. Линейная регрессия: определение параметров. Множественная регрессия и корреляция

Для количественного описания взаимосвязей между экономическими переменными в статистике используют методы регрессии и корреляции.

Регрессия — величина, выражающая зависимость среднего значения случайной величины у от значений случайной величины х.

Уравнение регрессии выражает среднюю величину одного признака как функцию другого.

Функция регрессии — это модель вида у = л», где у — зависимая переменная (результативный признак); х — независимая, или объясняющая, переменная (признак-фактор).

Линия регрессии — график функции у = f (x).

2 типа взаимосвязей между х и у:

1) может быть неизвестно, какая из двух переменных является независимой, а какая — зависимой, переменные равноправны, это взаимосвязь корреляционного типа;

Читать еще:  Детерминированный факторный анализ примеры решения задач

2) если х и у неравноправны и одна из них рассматривается как объясняющая (независимая) переменная, а другая — как зависимая, то это взаимосвязь регрессионного типа.

Виды регрессий:

1) гиперболическая — регрессия равносторонней гиперболы: у = а + b / х + Е;

2) линейная — регрессия, применяемая в статистике в виде четкой экономической интерпретации ее параметров: у = а+b*х+Е;

3) логарифмически линейная— регрессия вида: In у = In а + b * In x + In E

4) множественная — регрессия между переменными у и х1 , х2 . xm, т. е. модель вида: у = f(х1 , х2 . xm)+E, где у — зависимая переменная (результативный признак), х1 , х2 . xm— независимые, объясняющие переменные (признаки-факторы), Е- возмущение или стохастическая переменная, включающая влияние неучтенных факторов в модели;

5) нелинейная — регрессия, нелинейная относительно включенных в анализ объясняющих переменных, но линейная по оцениваемым параметрам; или регрессия, нелинейная по оцениваемым параметрам.

6) обратная — регрессия, приводимая к линейному виду, реализованная в стандартных пакетах прикладных программ вида: у = 1/a + b*х+Е;

7) парная — регрессия между двумя переменными у и x, т. е, модель вида: у = f (x) + Е, где у -зависимая переменная (результативный признак), x – независимая, объясняющая переменная (признак — фактор), Е — возмущение, или стохастическая переменная, включающая влияние неучтенных факторов в модели.

Корреляция — величина, отражающая наличие связи между явлениями, процессами и характеризующими их показателями.

Корреляционная зависимость — определение зависимости средней величины одного признака от изменения значения другого признака.

Коэффициент корреляции величин х и у (rxy) свидетельствует о наличии или отсутствии линейной связи между переменными:

где (-1; 1). Если: = -1, то наблюдается строгая отрицательная связь; = 1, то наблюдается строгая положительная связь; = 0, то линейная связь отсутствует.

— ковариация, т. е. среднее произведение отклонений признаков от их средних квадратических отклонений.

Коэффициент корреляции может служить мерой зависимости случайных величин.

Корреляция для нелинейной регрессии:

при R [0;1].

Чем ближе R к 1, тем теснее связь рассматриваемых признаков.

Множественная регрессия — регрессия между переменными у и x1,x2,…,xm. Т. е. модель вида: у = f (x1,x2,…,xm)+E

где у — зависимая переменная (результативный признак);

x1,x2,…,xm— независимые, объясняющие переменные (признак-фактор); Е- возмущение, или стохастическая переменная, включающая влияние неучтенных факторов в модели.

Множественная регрессия применяется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах. Цель множественной регрессии — построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также их совокупное воздействие на моделируемый показатель.

Основные типы функций, используемые при количественной оценке связей: линейная функция: у = а + a1х1 + а2х2,+ . + amxm. Параметры a1, а2, am, называются коэффициентами «чистой» регрессии и характеризуют среднее изменение результата с изменением соответствующего фактора на единицу при неизменном значении других факторов, закрепленных на среднем уровне; нелинейные функции:у=ах1 b 1 х2 b 2 . xm bm — — степенная функция; b1, b2. bm — коэффициенты эластичности; показывают, насколько % изменится в среднем результат при изменении соответствующего фактора на 1 % и при неизменности действия других факторов.

— гипербола;

— экспонента.

Регрессионный анализ

Материал из MachineLearning.

Регрессионный анализ — метод моделирования измеряемых данных и исследования их свойств. Данные состоят из пар значений зависимой переменной (переменной отклика) и независимой переменной (объясняющей переменной). Регрессионная модель есть функция независимой переменной и параметров с добавленной случайной переменной. Параметры модели настраиваются таким образом, что модель наилучшим образом приближает данные. Критерием качества приближения (целевой функцией) обычно является среднеквадратичная ошибка: сумма квадратов разности значений модели и зависимой переменной для всех значений независимой переменной в качестве аргумента. Регрессионный анализ — раздел математической статистики и машинного обучения. Предполагается, что зависимая переменная есть сумма значений некоторой модели и случайной величины. Относительно характера распределения этой величины делаются предположения, называемые гипотезой порождения данных. Для подтверждения или опровержения этой гипотезы выполняются статистические тесты, называемые анализом остатков. При этом предполагается, что независимая переменная не содержит ошибок. Регрессионный анализ используется для прогноза, анализа временных рядов, тестирования гипотез и выявления скрытых взаимосвязей в данных.

Содержание

Определение регрессионного анализа

Регрессия — зависимость математического ожидания (например, среднего значения) случайной величины от одной или нескольких других случайных величин (свободных переменных), то есть . Регрессионным анализом называется поиск такой функции , которая описывает эту зависимость. Регрессия может быть представлена в виде суммы неслучайной и случайной составляющих.

где — функция регрессионной зависимости, а — аддитивная случайная величина с нулевым матожиданием. Предположение о характере распределения этой величины называется гипотезой порождения данных. Обычно предполагается, что величина имеет гауссово распределение с нулевым средним и дисперсией .

Задача нахождения регрессионной модели нескольких свободных переменных ставится следующим образом. Задана выборка — множество значений свободных переменных и множество соответствующих им значений зависимой переменной. Эти множества обозначаются как , множество исходных данных . Задана регрессионная модель — параметрическое семейство функций зависящая от параметров и свободных переменных . Требуется найти наиболее вероятные параметры :

Читать еще:  Факторный анализ позволяет

Функция вероятности зависит от гипотезы порождения данных и задается Байесовским выводом или методом наибольшего правдоподобия.

Линейная регрессия

Линейная регрессия предполагает, что функция зависит от параметров линейно. При этом линейная зависимость от свободной переменной необязательна,

В случае, когда функция линейная регрессия имеет вид

здесь — компоненты вектора .

Значения параметров в случае линейной регрессии находят с помощью метода наименьших квадратов. Использование этого метода обосновано предположением о гауссовском распределении случайной переменной.

Разности между фактическими значениями зависимой переменной и восстановленными называются регрессионными остатками (residuals). В литературе используются также синонимы: невязки и ошибки. Одной из важных оценок критерия качества полученной зависимости является сумма квадратов остатков:

Здесь — Sum of Squared Errors.

Дисперсия остатков вычисляется по формуле

Здесь — Mean Square Error, среднеквадратичная ошибка.

На графиках представлены выборки, обозначенные синими точками, и регрессионные зависимости, обозначенные сплошными линиями. По оси абсцисс отложена свободная переменная, а по оси ординат — зависимая. Все три зависимости линейны относительно параметров.

Нелинейная регрессия

Нелинейные регрессионные модели — модели вида

которые не могут быть представлены в виде скалярного произведения

где — параметры регрессионной модели, — свободная переменная из пространства , — зависимая переменная, — случайная величина и — функция из некоторого заданного множества.

Значения параметров в случае нелинейной регрессии находят с помощью одного из методов градиентного спуска, например алгоритма Левенберга-Марквардта.

О терминах

Термин «регрессия» был введён Фрэнсисом Гальтоном в конце 19-го века. Гальтон обнаружил, что дети родителей с высоким или низким ростом обычно не наследуют выдающийся рост и назвал этот феномен «регрессия к посредственности». Сначала этот термин использовался исключительно в биологическом смысле. После работ Карла Пирсона этот термин стали использовать и в статистике.

В статистической литературе различают регрессию с участием одной свободной переменной и с несколькими свободными переменными — одномерную и многомерную регрессию. Предполагается, что мы используем несколько свободных переменных, то есть, свободная переменная — вектор . В частных случаях, когда свободная переменная является скаляром, она будет обозначаться . Различают линейную и нелинейную регрессию. Если регрессионную модель не является линейной комбинацией функций от параметров, то говорят о нелинейной регрессии. При этом модель может быть произвольной суперпозицией функций из некоторого набора. Нелинейными моделями являются, экспоненциальные, тригонометрические и другие (например, радиальные базисные функции или персептрон Розенблатта), полагающие зависимость между параметрами и зависимой переменной нелинейной.

Различают параметрическую и непараметрическую регрессию. Строгую границу между этими двумя типами регрессий провести сложно. Сейчас не существует общепринятого критерия отличия одного типа моделей от другого. Например, считается, что линейные модели являются параметрическими, а модели, включающие усреднение зависимой переменной по пространству свободной переменной —непараметрическими. Пример параметрической регресионной модели: линейный предиктор, многослойный персептрон. Примеры смешанной регрессионной модели: функции радиального базиса. Непараметрическая модель — скользящее усреднение в окне некоторой ширины. В целом, непараметрическая регрессия отличается от параметрической тем, что зависимая переменная зависит не от одного значения свободной переменной, а от некоторой заданной окрестности этого значения.

Есть различие между терминами: «приближение функций», «аппроксимация», «интерполяция», и «регрессия». Оно заключается в следующем.

Приближение функций. Дана функция дискретного или непрерывного аргумента. Требуется найти функцию из некоторого параметрическую семейства, например, среди алгебраических полиномов заданной степени. Параметры функции должны доставлять минимум некоторому функционалу, например,

Термин аппроксимация — синоним термина «приближение функций». Чаще используется тогда, когда речь идет о заданной функции, как о функции дискретного аргумента. Здесь также требуется отыскать такую функцию , которая проходит наиболее близко ко всем точкам заданной функции. При этом вводится понятие невязки — расстояния между точками непрерывной функции и соответствующими точками функции дискретного аргумента.

Интерполяция функций — частный случай задачи приближения, когда требуется, чтобы в определенных точках, называемых узлами интерполяции совпадали значения функции и приближающей ее функции . В более общем случае накладываются ограничения на значения некоторых производных производных. То есть, дана функция дискретного аргумента. Требуется отыскать такую функцию , которая проходит через все точки . При этом метрика обычно не используется, однако часто вводится понятие «гладкости» искомой функции.

Регрессия и классификация тесно связаны друг с другом. Термин алгоритм в классификации мог бы стать синонимом термина модель в регрессии, если бы алгоритм не оперировал с дискретным множеством ответов-классов, а модель — с непрерывно-определенной свободной переменной.

Линейная регрессия в машинном обучении

Линейная регрессия ( Linear regression ) — модель зависимости переменной x от одной или нескольких других переменных (факторов, регрессоров, независимых переменных) с линейной функцией зависимости.

Линейная регрессия относится к задаче определения «линии наилучшего соответствия» через набор точек данных и стала прос тым предшественником нелинейных методов, которые используют для обучения нейронных сетей. В этой статье покажем вам примеры линейной регрессии.

Читать еще:  Анализ темпов роста

Применение линейной регрессии

Предположим, нам задан набор из 7 точек (таблица ниже).

Цель линейной регрессии — поиск линии, которая наилучшим образом соответствует этим точкам. Напомним, что общее уравнение для прямой есть f (x) = m⋅x + b, где m — наклон линии, а b — его y-сдвиг. Таким образом, решение линейной регрессии определяет значения для m и b, так что f (x) приближается как можно ближе к y. Попробуем несколько случайных кандидатов:

Довольно очевидно, что первые две линии не соответствуют нашим данным. Третья, похоже, лучше, чем две другие. Но как мы можем это проверить? Формально нам нужно выразить, насколько хорошо подходит линия, и мы можем это сделать, определив функцию потерь.

Функция потерь — метод наименьших квадратов

Функция потерь — это мера количества ошибок, которые наша линейная регрессия делает на наборе данных. Хотя есть разные функции потерь, все они вычисляют расстояние между предсказанным значением y( х) и его фактическим значением. Например, взяв строку из среднего примера выше, f(x)=−0.11⋅x+2.5, мы выделяем дистанцию ошибки между фактическими и прогнозируемыми значениями красными пунктирными линиями.

Одна очень распространенная функция потерь называется средней квадратичной ошибкой (MSE). Чтобы вычислить MSE, мы просто берем все значения ошибок, считаем их квадраты длин и усредняем.

Вычислим MSE для каждой из трех функций выше: первая функция дает MSE 0,17, вторая — 0,08, а третья — 0,02. Неудивительно, что третья функция имеет самую низкую MSE, подтверждая нашу догадку, что это линия наилучшего соответствия.

Рассмотрим приведенный ниже рисунок, который использует две визуализации средней квадратичной ошибки в диапазоне, где наклон m находится между -2 и 4, а b между -6 и 8.

Слева: диаграмма, изображающая среднеквадратичную ошибку для -2≤m≤4, -6≤p≤8 Справа: тот же рисунок, но визуализирован как контурный график, где контурные линии являются логарифмически распределенными поперечными сечениями высоты.

Глядя на два графика, мы видим, что наш MSE имеет форму удлиненной чаши, которая, по-видимому, сглаживается в овале, грубо центрированном по окрестности (m, p) ≈ (0.5, 1.0). Есл и мы построим MSE линейной регрессии для другого датасета, то получим аналогичную форму. Поскольку мы пытаемся минимизировать MSE, наша цель — выяснить, где находится самая низкая точка в чаше.

Больше размерностей

Вышеприведенный пример очень простой, он имеет только одну независимую переменную x и два параметра m и b. Что происходит, когда имеется больше переменных? В общем случае, если есть n переменных, их линейная функция может быть записана как:

Один трюк, который применяют, чтобы упростить это — думать о нашем смещении «b», как о еще одном весе, который всегда умножается на «фиктивное» входное значение 1. Другими словами:

Добавление измерений, на первый взгляд, ужасное усложнение проблемы, но оказывается, постановка задачи остается в точности одинаковой в 2, 3 или в любом количестве измерений. Существует функция потерь, которая выглядит как чаша — гипер-чаша! И, как и прежде, наша цель — найти самую нижнюю часть этой чаши, объективно наименьшее значение, которое функция потерь может иметь в отношении выбора параметров и набора данных.

Итак, как мы вычисляем, где именно эта точка на дне? Распространенный подход — обычный метод наименьших квадратов, который решает его аналитически. Когда есть только один или два параметра для решения, это может быть сделано вручную, и его обычно преподают во вводном курсе по статистике или линейной алгебре.

Проклятие нелинейности

Увы, обычный МНК не используют для оптимизации нейронных сетей, поэтому решение линейной регрессии будет оставлено как упражнение, оставленное читателю. Причина, по которой линейную регрессию не используют, заключается в том, что нейронные сети нелинейны.

Различие между линейными уравнениями, которые мы составили, и нейронной сетью — функция активации (например, сигмоида, tanh, ReLU или других).

Эта нелинейность означает, что параметры не действуют независимо друг от друга, влияя на форму функции потерь. Вместо того, чтобы иметь форму чаши, функция потерь нейронной сети более сложна. Она ухабиста и полна холмов и впадин. Свойство быть «чашеобразной» называется выпуклостью, и это ценное свойство в многопараметрической оптимизации. Выпуклая функция потерь гарантирует, что у нас есть глобальный минимум (нижняя часть чаши), и что все дороги под гору ведут к нему.

Минимум функции

Но, вводя нелинейность, мы теряем это удобство ради того, чтобы дать нейронным сетям гораздо большую «гибкость» при моделировании произвольных функций. Цена, которую мы платим, заключается в том, что больше нет простого способа найти минимум за один шаг аналитически. В этом случае мы вынуждены использовать многошаговый численный метод, чтобы прийти к решению. Хотя существует несколько альтернативных подходов, градиентный спуск остается самым популярным методом.

Ссылка на основную публикацию
Adblock
detector